Innovation for Our Energy Future

Sustainable Transportation – Pathways to the Future

Matt Ringer
Engineer/Thermochemical Partnership Development
National Bioenergy Center
National Renewable Energy Laboratory

Golden, Colorado

November 9, 2005

National Bioenergy Center

Sponsored by DOE - EERE
Office of the Biomass Program

Purpose:

- Help achieve DOE goals:
 - > Reduce U.S. dependence oil
 - ➤ Build U.S. bioenergy industry
 - > Reduce global warming
- Provide one-stop shopping for DOE's industrial partners
- Coordinate multi-year planning and execution of R&D at all DOE Labs
- Fully leverage tax-payer investment in federal facilities

History of U.S. Energy Consumption

Source: 1850-1949, Energy Perspectives: A Presentation of Major Energy and Energy-Related Data, U.S. Department of the Interior, 1975; 1950-2000, Annual Energy Review 2000, Table 1.3.

Biomass Share of U.S. Energy Supply

(data for 2003)

NREL National Renewable Energy Laboratory

Benefits of Biomass

- Abundant
- Renewable
- Carbon-neutral
- Available worldwide
- Only sustainable source of hydrocarbons

Biomass can:

- Be used with the existing petroleum infrastructure
- Fill the gap between energy demand and petroleum availability.

1.3 Billion Ton/year U.S. Biomass Supply Scenario

Based on ORNL & USDA Resource Assessment Study by Perlach et.al. (April 2005) http://www.eere.energy.gov/biomass/pdfs/final_billionton_vision_report2.pdf

Integration of Biorefinery Elements

Integrate starch & lignocellulose conversion

DOE Biomass Program Goal: A Vision of Oil Savings

- Existing and emerging technology supports targets of a renewable fuel standard
- ✓ Advanced technology provides the leap to substantial oil displacement
- ✓ Government role in high risk R&D
- ✓ Industry role is to commercialize

Hydrogen – Key to Secure and Clean Energy Future

Energy Security

Can be produced from a variety of domestic sources

Environmental

Criteria pollutants from mobile sources eliminated

Emissions from stationary H₂ production sites easier to control

Greenhouse gas emissions significantly reduced

Economic Competitiveness

Abundant, reliable, and affordable energy is an essential component in a healthy, global economy.

Timeline for Hydrogen Deployment

Barriers to Hydrogen Economy

Critical Path Technology Barrier

- Hydrogen Storage (>300 mile range)
- Hydrogen Production cost (\$1.50 - 2.00 per gge)
- Fuel Cell cost (<\$50 per kW)

Economic/Institutional

Battiets:Codes and Standards
(Safety and global
competitiveness)

- Hydrogen Delivery (Investment for new distribution infrastructure)
- Education

Summary

- Biomass is our only sustainable long-term source of carbon-based liquid fuels & chemicals
- The NBC was created to help coordinate biomass research conducted at U.S. DOE Labs
 - 2 Core conversion platforms:
 - Bio-Chemical
 - Thermo-Chemical
 - Biorefinery concept development
 - Bio-product development
- Hydrogen timeline for deployment
 - Realization of Hydrogen Economy after 2030
- Barriers remain to make Hydrogen Economy tenable

Additional Information

- DOE Biomass Program Web Site http://www.eere.energy.gov/biomass/
- NREL Biomass Web Site http://www.nrel.gov/biomass/
- DOE Hydrogen Program Web Site http://www.hydrogen.energy.gov/

